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Genetic associations between non-cognitive 
skills and academic achievement over 
development

Margherita Malanchini    1,2,14 , Andrea G. Allegrini    2,3,14 , 
Michel G. Nivard    4, Pietro Biroli    5, Kaili Rimfeld2,6, Rosa Cheesman    7, 
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Andrew D. Grotzinger    11, Laurel Raffington    12, Javier De la Fuente    13, 
Jean-Baptiste Pingault    2,3, Elliot M. Tucker-Drob    13, K. Paige Harden    13 & 
Robert Plomin    2

Non-cognitive skills, such as motivation and self-regulation, are partly 
heritable and predict academic achievement beyond cognitive skills. However, 
how the relationship between non-cognitive skills and academic achievement 
changes over development is unclear. The current study examined how 
cognitive and non-cognitive skills are associated with academic achievement 
from ages 7 to 16 years in a sample of over 10,000 children from England 
and Wales. The results showed that the association between non-cognitive 
skills and academic achievement increased across development. Twin and 
polygenic scores analyses found that the links between non-cognitive genetics 
and academic achievement became stronger over the school years. The results 
from within-family analyses indicated that non-cognitive genetic effects  
on academic achievement could not simply be attributed to confounding  
by environmental differences between nuclear families, consistent with  
a possible role for evocative/active gene–environment correlations.  
By studying genetic associations through a developmental lens, we provide 
further insights into the role of non-cognitive skills in academic development.

Children who are emotionally stable, motivated and capable of regulat-
ing their attention and impulses do better in school, independent of 
their level of cognitive (Cog) ability1–7. These important socio-emotional 
characteristics have been broadly described as non-cognitive skills 
(NCS)8. ‘Non-cognitive’ is an imperfect term that primarily serves to 
differentiate these characteristics from what they are not—performance 
on standardized tests of cognitive ability. The panoply of non-cognitive 
skills that predict better educational outcomes can be organized into 
three partly overlapping domains: motivational factors, self-regulatory 
strategies and personality traits9.

Twin research has shown that genetic differences between 
people contribute to their differences in non-cognitive skills.  

Most domains of non-cognitive skills, including academic motiva-
tion10,11, self-regulation12 and personality13, are moderately herit-
able (~30–50%). In addition, twin studies have found evidence that 
non-cognitive skills are genetically correlated with academic achieve-
ment14,15. That is, some of the same genetic differences that are associ-
ated with variation in academic achievement are also associated with 
non-cognitive skills.

DNA-based methods have confirmed genetic links between 
non-cognitive skills and academic performance. Genome-wide asso-
ciation studies (GWAS) of educational attainment (EA) (that is, years 
of formal education completed) have identified genetic variants that 
are correlated with completing formal education16,17. A polygenic score 
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create environmental experiences that foster further achievement, 
such as deciding to take advanced classes28. That is, genetic differences 
between children can result in differential exposure to learning environ-
ments, which, in turn, can affect their academic achievement29. These 
active/evocative gene–environment correlations amplify the effects 
of genetic difference and are one theorized mechanism for increasing 
genetic associations over development30,31.

Fourth, we explored whether genetic associations with academic 
achievement varied by SES. Genetic and environmental processes 
might interact such that the effects of environmental experiences on 
a trait might be partly dependent on genetic factors and vice versa32,33. 
Studies that examined this possibility have focused on the role of 
socio-economic disadvantage across a broad range of contexts, includ-
ing family SES34,35 and the school environment36,37. We explore whether 
the cognitive and non-cognitive PGS prediction of academic achieve-
ment differs at different levels of socio-economic disadvantage across 
development.

Under a developmental lens, these analyses address four core 
research questions providing a detailed account of the processes 
through which cognitive and non-cognitive skills are linked to indi-
vidual differences in academic achievement. We triangulated evidence 
across multiple genetic methods. Since each method is subject to 
different and unrelated assumptions and limitations, triangulating 
multiple methods provides a powerful tool to increase the reliability 
of our results38.

Results
Associations between non-cognitive skills and academic 
achievement
Parents, teachers and twins rated different non-cognitive skills at differ-
ent ages. On the basis of extant literature and measures availability, we 
focused on two broad dimensions of non-cognitive skills, which were 
modelled as latent factors (Fig. 1): (1) education-specific non-cognitive 
skills, including measures of academic interest, attitudes towards learn-
ing and academic self-efficacy and (2) domain-general self-regulation 
skills, including measures of behavioural and emotional regulation not 
necessarily related to the school context (Fig. 1 and Methods). Here, 
we report analyses of these two dimensions. Analyses of individual 
measures are reported in Supplementary Information (Supplementary 
Note 1 and Supplementary Tables 1b and 2).

Latent factors of education-specific non-cognitive skills and 
domain-general self-regulation skills (Supplementary Tables 3 and 
4) were positively correlated with academic achievement at all devel-
opmental stages. Effect sizes differed by rater and developmental 
stage and tended to increase with age. For example, the association 
between self-rated education-specific non-cognitive skills and aca-
demic achievement increased from r = 0.10 (95% confidence interval 
(CI) 0.07 to 0.14) at 9 years of age, to r = 0.41 (95% CI 0.38 to 0.44) at 
12 years of age and to r = 0.51 (95% CI 0.48 to 0.55) at 16 years of age 
(Supplementary Note 1, Supplementary Fig. 1 and Supplementary 
Table 5). Latent non-cognitive factors were also modestly correlated 
with latent factors of general cognitive ability (Supplementary Table 6) 
at the same age (Supplementary Table 7).

We examined whether general cognitive ability could account for 
the associations between non-cognitive skills and academic achieve-
ment. Multiple regression analyses showed that both non-cognitive 
factors were substantially and significantly associated with academic 
achievement beyond cognitive skills at every stage of compulsory edu-
cation (Fig. 2a and Supplementary Table 8). The relative association 
between non-cognitive skills and academic achievement increased 
developmentally, particularly when considering self-reported meas-
ures. For self-reported education-specific non-cognitive skills, the 
effect size of the relative prediction of achievement increased from 
β = 0.10 (95% CI 0.06 to 0.13) at 9 years of age (effect size for Cog abil-
ity: β = 0.46, 95% CI 0.44 to 0.48) to β = 0.28 (95% CI 0.24–0.32) at 

(PGS) constructed from these GWAS results predicts higher levels of 
self-control18, more adaptive personality traits (higher conscientious-
ness, agreeableness and openness to experience) and greater academic 
motivation19. Additionally, previous GWAS work has identified associa-
tions between DNA variants and EA that were independent of cognitive 
test performance, essentially performing a GWAS of non-cognitive 
skills20. The genetics of non-cognitive skills were found to be related 
to conscientiousness, openness to experience, delay of gratification 
and health-risk behaviours20.

The current study uses both twin and DNA-based methods to 
expand our understanding of the association between non-cognitive 
skills and academic achievement over development. We address 
four key questions (Fig. 1). First, does the strength of the association 
between non-cognitive skills and academic achievement change over 
development (from age 7 to age 16 years)? Second, do genetic dis-
positions towards non-cognitive skills vary in their association with 
academic achievement across development? Third, to what extent are 
these associations accounted for by between-family processes, such 
as environmental influences shared between individuals in a family? 
Fourth, do non-cognitive genetic associations with academic achieve-
ment vary by socio-economic status (SES)?

First, we investigated the links between non-cognitive skills and 
academic achievement across the school years. Developmental stud-
ies that have investigated the association between non-cognitive skills 
and academic achievement remain scarce and have focused on a few 
specific measures over relatively short time frames21. Here, we analyse 
a comprehensive battery of developmental data collected from over 
10,000 children born in England and Wales who were followed across 
compulsory education (Fig. 1, left). Furthermore, we simultaneously 
consider the role of cognitive skills in these associations. Past research 
has highlighted how skills that are broadly considered non-cognitive, 
such as self-control, rely on cognitive competencies22. Therefore, it 
is important to take into account developing cognitive skills when 
assessing the relationship between non-cognitive skills and academic 
achievement over time.

Second, we investigated whether genetic dispositions towards 
non-cognitive skills become increasingly predictive of academic 
achievement across development. Twin studies focusing on specific 
moments in childhood or adolescence23 have found that heritable vari-
ation in non-cognitive skills, such as motivation and self-regulation, 
contribute to academic achievement beyond cognitive competencies24. 
However, this relationship across development remains underinves-
tigated. We triangulate evidence across different methods, including 
twin and PGS analyses, to investigate the association between genetic 
factors linked to cognitive and non-cognitive skills and academic 
achievement across compulsory education.

Third, with a sibling-difference design, we examined to what 
extent the developmental relationship between genetic propensity 
for non-cognitive skills and academic achievement is accounted for by 
family-wide environmental processes. Sibling differences in genotypes 
are randomized by meiosis, such that siblings have an equal probability 
of inheriting any given parental allele. Therefore, within-sibling pair 
PGS associations are thought to be less confounded by environmental 
differences between nuclear families, including population stratifica-
tion and indirect genetic effects25. Indirect genetic effects refer to the 
association between the non-transmitted parental genotypes and the 
offspring phenotype, potentially reflecting rearing environments, 
although they can also capture broader demographic phenomena, 
such as assortative mating26.

Conversely, differences between siblings in PGS associations are 
often referred to as ‘direct’ genetic effects27 in that they are consistent 
with a causal effect of genetic variants within an individual on their phe-
notype. However, even direct genetic effects involve mediation through 
environmental processes. For example, children with a greater motiva-
tion towards academic achievement might actively select, modify and 
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12 years of age (effect size for Cog ability: β = 0.36, 95% CI 0.32 to 
0.40) to β = 0.58 (95% CI 0.54 to 0.62) at 16 years of age (effect size for 
Cog ability: β = 0.39, 95% CI 0.37 to 0.41). A developmental increase 
was also observed for self-reported measures of domain-general 
self-regulation skills, for which the predictive power increased from 
β = 0.11 (95% CI 0.07 to 0.15) at 9 years of age to β = 0.21 (95% CI 0.19 to 
0.23) at 16 years of age, after accounting for general cognitive ability 
(Supplementary Table 8).

Univariate and multivariate twin analyses
Applying twin designs (Methods), we found that the heritability (that 
is, the extent to which observed differences in a trait are accounted for 
by genetic differences) of non-cognitive skills differed significantly 

across raters and developmental stages (Supplementary Note 2,  
Supplementary Table 9 and Supplementary Figs. 2–6). Heritability 
estimates of latent non-cognitive factors, which exclude error of meas-
urement, ranged between 70% (95% CI 0.63 to 0.77) for self-reported 
education-specific skills at 9 years of age and 93% (95% CI 0.91 to 0.96) 
for parent-reported education-specific non-cognitive skills at 9 years 
of age (Supplementary Note 2, Supplementary Tables 10 and 11 and 
Supplementary Fig. 7). These substantial heritability estimates are 
consistent with previous studies that investigated the heritability 
of latent dimensions of non-cognitive skills11 and of a general fac-
tor of psychopathology across different raters39. The correlation 
between non-cognitive measures and academic achievement was 
mostly accounted for by genetic factors and, to a lesser extent, by 

1. Education-specific NCS
Rated by parents (P), teachers (T) and self (S)

Measures

P/T/S

Academic interest
Value of learning
Academic self-e icacy
…
Age 9 years (P, T, S)
Age 12 years (S)
Age 16 years (S)

P/T/S

2. Domain-general self-regulation

Emotional regulation
Behavioural regulation

Age 7 years (P)
Age 9 years (P, T, S)
Age 12 years (P, T, S)
Age 16 years (S)

g

3. General cognitive ability (g)

Verbal reasoning
Non-verbal reasoning

Age 7 years (4 tests)
Age 9 years (4 tests)
Age 12 years (4 tests)
Age 16 years (2 tests)

4. Academic achievement

English

Maths

Ach total
Teacher-reported
Age 7 years
Age 9 years
Age 12 years

GCSE score
Age 16 years

Research questions

Ach

g

NCS

Q1. Does the NCS
prediction of academic achievement
increase over development?

Q2. Do genetic e ects on noncognitive
skills become increasingly important for
academic achievement over development?

Age 7 years
Age 9 years
Age 12 years
Age 16 years

A. Twin method

MZ twins DZ twins

Achg

A A A

NCS

B. Molecular genetics methods
Step 1. New GWAS of NCS using
Genomic SEM

Step 2. Cog and NonCog PGS prediction of
academic achievement over development

Cog Non
Cog

0

Achievement 7 years

Achievement 9 years

Achievement 12 years

Achievement 16 years

DZ twins

Between and within-sibling PGS predictions

Ach 7

Ach 9

Ach 12

Ach 16

Between Within

Q4. Do PGS predictions of academic
achievement di er at di erent levels of
socio-economic disadvantage?

Ach

Age 7 years
Age 9 years
Age 12 years
Age 16 years

Q3. Are developmental changes in
genetic e ects on achievement evident
when comparing siblings?

Fig. 1 | A visual summary of the measures, research questions and methods 
adopted in the present study. Left: we used factor analysis to capture individual 
differences in two broad dimensions of non-cognitive skills (NCS): education-
specific NCS (including measures such as academic interest, academic self-
efficacy and value attributed to learning) and domain-general self-regulation skills 
(including measures of behavioural and emotional regulation not necessarily 
related to the school context). We also created latent measures of general 
cognitive ability (g) from verbal and non-verbal tests at four ages. Academic 
achievement (Ach) measures included teacher ratings of academic performance 
based on the national curriculum at ages 7, 9 and 12 years and exam scores at 
16 years (see Methods for a detailed description). Centre and right: a summary of 
the methodologies adopted to address each of the four core research questions 
in the study. We addressed the first research question (Q1) by conducting a series 

of multiple regressions to investigate changes in the developmental contribution 
of NCS to academic achievement beyond cognitive skills. We addressed the 
second research question (Q2) using multiple genetic methods. First (A), we 
conducted trivariate Cholesky decompositions using twin data. Second (B), we 
created a GWAS of NCS by extending the GWAS-by-subtraction20 approach with 
a set of GWAS for specific cognitive tasks and SES-relevant traits and examined 
developmental changes in the cognitive (Cog) and non-cognitive (NonCog) 
polygenic score (PGS) prediction of academic achievement from age 7 to 16 years. 
We addressed our third research question (Q3) by modelling Cog (blue) and 
NonCog (red) PGS effects within a sibling difference design, therefore separating 
within-family from between-family effects. We investigated our fourth research 
question (Q4) fitting multivariable models, including the effects of the Cog/
NonCog PGS, family SES and their two-way interaction.
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non-shared environmental factors (Supplementary Note 2 and  
Supplementary Fig. 6).

We then investigated whether the observed genetic associations 
between latent non-cognitive factors and academic achievement could 
be accounted for by genetic factors associated with cognitive skills. We 
investigated this question with a series of trivariate Cholesky decompo-
sitions (Methods), the results of which are presented in Fig. 2b, which 
reports standardized squared path estimates, and Supplementary 
Tables 12 and 13, which report standardized path estimates and 95% CIs. 
Similar to hierarchical regression, the Cholesky approach parses the 
genetic and environmental variation in each trait into that accounted 
for by traits previously entered into the model and the variance which 
is unique to a newly entered trait.

Each bar in Fig. 2b is the outcome of a different trivariate Cholesky 
decomposition of the heritability of academic achievement (the total 
length of the bar) into genetic effects associated with non-cognitive 
skills after controlling for genetic effects associated with cognitive 
skills at the same age. We found that genetic effects associated with 
cognitive skills accounted for between 21% and 36% of the total variance 
in academic achievement, as indicated by standardized paths rang-
ing between 0.46 (95% CI 0.37 to 0.54) and 0.60 (95% CI 0.50 to 0.70). 
Genetic effects associated with non-cognitive skills, independent of 

cognitive skills, accounted for between 0.1% and 32.5% of the variance 
in academic achievement. Standardized paths ranged between 0.01 
(95% CI −0.16 to 0.17) for self-reported self-regulation at 9 years of age 
and 0.57 (95% CI 0.48 to 0.67) for teacher reported education-specific 
non-cognitive skills at 9 years of age. Last, we found that between 5% 
and 37% of the variance in academic achievement was independent 
of genetic effects associated with cognitive and non-cognitive skills. 
Standardized paths ranged between 0.23 (95% CI 0.13 to 0.33) and 0.61 
(95% CI 0.52 to 0.70).

The top three rows of Fig. 2b illustrate the developmental increase 
in how the genetics of self-reported non-cognitive skills contribute to 
the genetics of academic achievement. Focusing on education-specific 
non-cognitive skills, we found that standardized squared path esti-
mates increased from explaining 1% of the total variance in academic 
achievement at 9 years of age (standardized path estimate of 0.01, 95% 
CI −0.16 to 0.17) to 4% at 12 years of age (standardized path estimate of 
0.16, 95% CI 0.02 to 0.30) and 12% of the total variance in achievement at 
16 years of age (standardized path estimate of 0.35, 95% CI 0.26 to 0.44) 
(Supplementary Tables 12 and 13). This increased contribution beyond 
cognitive skills was also observed for domain-general self-regulation. 
See Supplementary Fig. 7 for the full models’ results, which include 
shared and non-shared environmental estimates.
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Fig. 2 | Associations between non-cognitive skills and academic achievement 
accounting for general cognitive ability. a, Associations between latent 
factors of non-cognitive skills (NCS) and academic achievement at ages 7, 9, 12 
and 16 years, after accounting for general cognitive ability at the same age using 
multiple regression. Each bar indicates the effect size of standardized regression 
coefficients and the error bars indicate the 95% CI around the estimates. The 
left side shows the associations for latent measures of education-specific 
NCS, while the right shows the associations for latent dimensions of domain-
general self-regulation skills. The figure is further divided into self-rated (top), 
parent-rated (middle) and teacher-rated (bottom) measures. N of independent 
samples ranged between 1,742 and 3,843; the exact N for each regression 
analysis are reported in Supplementary Table 8. b, Each bar represents genetic 

effects (standardized and squared path estimates) on academic achievement 
over development and includes three shadings. The lighter (yellow) shading 
indicates the proportion of genetic variance in academic achievement that can 
be attributed to genetic variance in general cognitive ability (g). The orange 
shadings indicate the proportion of genetic variance in academic achievement 
that can be attributed to genetic variance in NCS, independent of the genetics 
of cognitive skills (NonCog-g). The red shading indicates genetic effects on 
academic achievement independent of the genetics of cognitive and non-
cognitive skills (achievement specific). The results are further divided into 
self-rated (top), parent-rated (middle) and teacher-rated (bottom) measures. 
Standardized paths and 95% CI for all estimates are presented in Supplementary 
Tables 12 and 13.
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A PGS of non-cognitive skills
To obtain a PGS for use in subsequent analyses, we first extended 
previous work using the GWAS-by-subtraction approach to iden-
tify genetic variants associated with non-cognitive skills20. Pre-
vious GWAS-by-subtraction work leveraged genomic structural 
equation modelling (SEM)40 and the two GWAS of EA and cognitive 
performance (CP) to separate the genetic variance in EA into a cogni-
tive component and a residual non-cognitive component. We extended 
this model in two directions. First, we extended the latent cognitive 
factor by including GWAS summary statistics from additional cogni-
tive measures (episodic memory; processing speed, executive func-
tions and reaction time)41. Second, we included other socio-economic 
attainment variables, including Townsend Deprivation and Income42, 
in addition to EA17. The resulting non-cognitive factor can therefore be 
defined as genetic variation shared by EA, income and neighbourhood 
deprivation that is independent of all measured cognitive abilities. Akin 
to Demange et al.20, we then fitted a Cholesky model (Methods) where 
indicators of the non-cognitive latent factor (henceforth NonCog) were 
regressed on the cognitive latent factor (henceforth Cog; Fig. 3a and 
Supplementary Table 14).

Our Cog and NonCog factors correlated strongly with those 
obtained from Demange et al.20 (Supplementary Table 15). The genetic 
correlation (rg) was 0.96 between the Cog factors and 0.93 between the 
NonCog factors. The rg between Cog and NonCog was 0.15. Supplemen-
tary Fig. 8 shows the rg values between the Cog and NonCog genetics 
and 18 psychiatric, personality and socio-economic traits, which we 
compared with the rg values obtained by Demange et al.20. The pattern 
of associations was largely consistent across the two models. However, 
in some instances, the results diverged. Specifically, with respect to 
psychiatric traits, autism, anorexia and attention deficit/hyperactive 
disorder, a larger gap was observed between the Cog and NonCog 
factors compared to Demange et al., where differences in the correla-
tions were less pronounced or absent. As expected, the results differed 
most for socio-economic traits, with stronger correlations for NonCog 
than Cog with longevity (rg = 0.52, 95% CI 0.44 to 0.60, P = 1.04 × 10−45 
versus rg = 0.35, 95% CI 0.29 to 0.41, P = 6.40 × 10−31), neighbourhood DE  
(rg = −0.66, 95% CI −0.74 to −0.58, P = 3.85 × 10−54 versus rg = −0.28, 95% 
CI −0.36 to −0.21, P = 5.98 × 10−12) and EA (rg = 0.83, 95% CI 0.81 to 0.85, 
P = 0.00 versus rg = 0.65, 95% CI 0.63 to 0.67, P = 0.00; Supplementary 
Fig. 8 and Supplementary Table 15).

NonCog PGS effects increase developmentally
We calculated PGS for Cog and NonCog and examined their association 
with cognitive, non-cognitive and academic phenotypes over devel-
opment. PGS analyses leverage findings from GWAS and aggregate 
single-nucleotide polymorphisms (SNPs) across the genome into a 
single composite index that summarizes genetic influence on a target 
trait. We calculated PGS as the sum of SNPs at all loci weighted by the 
effect size of their association (Methods). We first investigated whether 
and to what extent Cog and NonCog PGS predicted individual differ-
ences in non-cognitive skills across development by modelling both 
PGSs in a multiple regression model (Methods).

In line with our previously obtained results showing a moder-
ate association between Cog and NonCog traits, we found that the 
Cog PGS significantly predicted variation in non-cognitive skills 
across development, with standardized effect sizes ranging between 
β = 0.04 (95% CI 0.001 to 0.079) and β = 0.22 (95% CI 0.18 to 0.26; 
Supplementary Fig. 9 and Supplementary Table 16). The NonCog 
PGS, independent of the Cog PGS, predicted observed variation 
in non-cognitive skills at all developmental stages. Associations 
were small at earlier ages (for example, β = 0.07, 95% CI 0.03 to 0.11, 
P (corrected) = 1.93 × 10−3) for parent-reported education-specific 
non-cognitive skills at 9 years and β = 0.10, 95% CI 0.08 to 0.12, P (cor-
rected) = 2.24 × 10−11 for parent-reported self-regulation at 7 years) 
but they increased developmentally, particularly for self-reported 

education-specific non-cognitive measures (β = 0.16, 95% CI 0.12 to 
0.20, P (corrected) = 8.30 × 10−17 at 16 years of age). The only exception 
was observed for self-reported education-specific non-cognitive skills 
at 9 years, for which the prediction was negative (β = −0.03, 95%CI −0.07 
to 0.01) and did not reach significance after accounting for multiple 
testing (Supplementary Table 16).

In Supplementary Note 3a, we show that this increase in prediction 
was significant overtime for the NonCog PGS, but not for the Cog PGS. 
Furthermore, we show that this increase is not explained by the NonCog 
PGS capturing more Cog variance later in adolescence (Supplementary 
Note 3b) or by SES (Supplementary Note 3c).

Cog and NonCog PGSs predicted variation in general cognitive 
ability, verbal ability and non-verbal ability at all developmental stages. 
As expected, the Cog PGS prediction of cognitive phenotypes was sub-
stantially stronger than the NonCog prediction, with estimates ranging 
between β = 0.19, 95% CI 0.17 to 0.21, P (corrected) = 3.77 × 10−42 and 
β = 0.27, 95% CI 0.23 to 0.31, P (corrected) = 1.04 × 10−52 for the Cog PGS 
and between β = 0.10, 95% CI 0.06 to 0.14, P (corrected) = 4.41 × 10−10 and 
β = 0.18, 95% CI 0.14 to 0.22, P (corrected) 5.51 × 10−21 for the NonCog 
PGS (Supplementary Fig. 10 and Supplementary Table 16).

Next, we considered the effects of the Cog and NonCog PGS on 
academic achievement over development. We detected associations 
between the Cog PGS and achievement as early as 7 years (β = 0.24, 
95% CI 0.22 to 0.26, P (corrected) = 3.68 × 10−86), these associations 
remained largely consistent across development (β = 0.26, 95% CI 
0.24 to 0.28, P (corrected) = 2.71 × 10−126 at 16 years of age). Although 
we observed weaker effects for the NonCog PGS in early childhood 
(β = 0.10, 95% CI 0.08 to 0.12, P (corrected) = 8.12 × 10−15) compared 
with the Cog PGS, these increased across development and reached 
effects comparable to those of the Cog PGS at 16 years (β = 0.22, 
95% CI 0.20 to 0.24, P (corrected) = 1.85 × 10−84; Fig. 3b and Supple-
mentary Table 16). The same pattern of associations was observed 
also when considering achievement in English and mathematics, 
separately (Supplementary Table 16). This observed increase in the 
NonCog PGS prediction of academic achievement over develop-
ment is consistent with transactional models of gene–environment 
correlation (rGE), driven by NonCog genetics. These PGS predic-
tions were in line with those obtained from the PGSs created using 
the GWAS-by-subtraction method published by Demange et al.  
(Supplementary Table 17).

Within-family PGS–achievement associations
Given our observation of an increase in the NonCog PGS associations 
with academic achievement across development, we extended our 
pre-registered analyses (https://osf.io/m5f7j/) to examine whether 
and to what extent this increase was accounted for by family-wide pro-
cesses. Specifically, using a sibling difference design, we separated the 
NonCog PGS associations into within-family effects, indexing direct 
genetic effects from between-family effects, which may include indi-
rect genetic effects and demographic confounding (Methods). We 
examined Cog and NonCog within and between-family predictions 
of academic achievement from age 7 to 16 years.

Two main findings emerged from this analysis (Fig. 3c). First, we 
observed that the effect sizes for the direct effects of NonCog were 
about half the size of the population-level associations (Supplementary 
Table 18). Similarly, the prediction from the Cog PGS was reduced by 
over one-third, consistent with previous evidence43. Second, while the 
Cog direct and indirect genetic effects did not vary substantially over 
the developmental period considered (from β = 0.20, 95% CI 0.16 to 
0.24, P = 2.75 × 10−20 to β = 0.23, 95% CI 0.19 to 0.27, P = 4.12 × 10−32), Non-
Cog effects showed an increase from age 7 to age 16 (from β = 0.06, 95% 
CI 0.02 to 0.10, P = 0.005 to β = 0.15, 95% CI 0.11 to 0.19, P = 1.39 × 10−14; 
Fig. 3c and Supplementary Table 18). These results suggested that 
the developmental increase in the between-family PGS prediction 
was mostly driven by NonCog rather than Cog skills. In addition, this 
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developmental increase could be observed for both indirect and direct 
genetic effects. We conducted sensitivity analyses and replicated the 
results with the PGSs constructed using the method published by 
Demange et al. (Supplementary Table 18b).

PGS–SES interactions on achievement
Last, we extended our pre-registered analyses to test whether SES could 
explain or modify the observed pattern of developmental associa-
tions between PGS and academic achievement. We fitted multivariable 
models at each developmental stage, including Cog/NonCog PGS 
effects, along with SES at recruitment, covariates and their two-way 
interactions (Methods) to test whether SES moderated Cog and Non-
Cog PGS effects on academic achievement. After adjusting for SES, the 
same pattern of relationships was observed, with a relatively stable 
association between the Cog PGS and achievement, and a steeper 

increase in the NonCog PGS prediction, even though all effects were 
attenuated (Supplementary Table 19). We did not detect significant 
interaction effects between either the Cog or the NonCog PGS and 
SES (Supplementary Table 19).

Figure 3d depicts mutually adjusted slopes for the Cog and 
NonCog PGS prediction against academic achievement at different 
levels of family SES. The figure shows that although higher SES cor-
responded to greater achievement on average, the slope of the asso-
ciation between the Cog and NonCog PGS and achievement did not 
differ across socio-economic strata. Higher PGS, for both cognitive 
and non-cognitive skills, corresponded to higher academic achieve-
ment, and higher SES corresponded to both higher mean PGSs and 
higher achievement, indicating a correlation rather than an inter-
action between genetic and environmental influences on academic 
achievement.
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Fig. 3 | Contribution of NonCog genetics to academic development: 
genomic analyses and gene–environment interplay. a, Path diagram for the 
extension of the GWAS-by-subtraction model implemented in genomic SEM 
(Methods). In addition to GWAS summary statistics for cognitive performance 
(CP) and educational attainment (EA), summary statistics of memory (ME), 
symbol digit (SD), trail making (TM) and reaction time (RT) GWASs loaded 
on the Cog latent factor while GWAS summary statistics for income (IN) 
and deprivation (DE) loaded on the NonCog latent factor, in addition to EA 
(Methods). b, Cog (blue) and NonCog (red) polygenic score (PGS) prediction 
of academic achievement at ages 7,9, 12 and 16 years. Point estimates represent 
beta coefficients and error bars are 95% Cl, N of clustered observations 
6,575 at age 7, 3,144 at age 9, 4,445 at age 12 and 7,307 at age 16 years. Each 

cluster comprised twin siblings and non-independence was accounted for 
using generalized estimating equation. c, The results of PGS analyses after 
partitioning the effects of Cog and NonCog into between and within-family 
factors. Point estimates represent beta coefficients and error bars are 95% 
CI. d, Cog and NonCog PGS prediction of academic achievement at the end 
of compulsory education (age 16 years), plotted at different levels of family 
socio-economic status (SES): low (<25th percentile), middle (middle 50% 
interquartile range) and high (>75% percentile). The box plots show median 
interquartile range (middle 50%), minimum, maximum and outliers for Cog 
(blue) and NonCog (red), respectively. N ranging from 3,001 to 7,019, exact N for 
each regression analysis are reported in Supplementary Table 19.
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Discussion
We investigated the association between cognitive and non-cognitive 
genetics and academic achievement during compulsory education 
in a UK-based sample. Four complementary findings emerged. First, 
non-cognitive skills increasingly predicted academic achievement 
over the school years, and these associations remained substantial 
even after accounting for cognitive skills. Second, the links between 
non-cognitive skills and academic achievement were mainly due to 
shared genetic factors, whose relative contribution also increased 
over the school years. For example, the NonCog PGS prediction of 
academic achievement nearly doubled over the school years while the 
Cog PGS prediction remained relatively stable. Third, the increasingly 
important role of non-cognitive genetics persisted even after account-
ing for family-fixed effects. Fourth, PGS associations with academic 
achievement over development did not differ across socio-economic 
contexts. Together, these findings highlight the important role that 
non-cognitive skills play during primary and secondary education and 
suggest that fostering such skills might provide an avenue for success-
ful educational strategies and interventions.

The first set of interesting findings about development emerged 
from twin analyses of the covariance between non-cognitive traits 
and academic achievement. First, we found that genetic fac-
tors accounted for most of the observed correlations between 
non-cognitive skills and academic achievement at all developmen-
tal stages. Second, both phenotypic and genetic correlation values 
increased developmentally, particularly for self-reported meas-
ures of non-cognitive traits. Third, our twin analyses showed that 
genetic factors accounted for most of the correlations between 
non-cognitive skills and academic achievement after accounting 
for cognitive skills. Finally, this independent genetic contribution 
of non-cognitive skills to academic achievement increased devel-
opmentally. This increase was observed for both education-specific 
non-cognitive skills, where the measures included in the general 
factors changed developmentally, as well as for domain-general 
self-regulation skills, for which the same measures were collected 
at all developmental stages. Therefore, the observed developmen-
tal increase in phenotypic and genetic associations independent 
of cognitive skills is unlikely to be an artefact of inconsistencies in 
measurement but rather reflects the increasingly important role of 
non-cognitive skills across compulsory education.

A further aim of the current study was to better understand 
what was captured by the NonCog PGS constructed using GWAS-by- 
subtraction20, particularly in relation to what other skills beyond 
cognitive ability propel students down different educational tra-
jectories. Given the link between SES and academic achievement44, 
we were specifically interested in whether the NonCog PGS also 
indexed socio-economic-related factors. To this end, we extended 
the GWAS-by-subtraction model in two directions. First, with the aim 
of making a more refined cognitive factor, we added summary statistics 
from several other GWASs of fluid intelligence. Second, we included 
GWASs of other traits known to associate with achievement beyond 
cognitive abilities, specifically targeting SES-related traits, such as 
household income and social deprivation, making the NonCog PGS 
factor more explicitly socio-economic relevant.

It should be highlighted that GWAS of SES-relevant measures may 
be more subject to socio-demographic confounds, such that estimates 
of SNP effects will also capture population stratification phenomena, 
such as geographic clustering45. This limitation is particularly relevant 
for the GWAS of social deprivation as the measure is an area-based 
score of social inequality. Interestingly, the results obtained from this 
model paralleled those we obtained when we applied the Cog and 
NonCog PGSs from the original GWAS-by-subtraction model, which 
only used EA to define the NonCog factor. This suggests that the PGS 
measure of non-cognitive skills from Demange et al. may have already 
captured some SES-related effects. Importantly, our employment of 

a within-family comparison helped us to mitigate possible confounds 
associated with uncontrolled population stratification.

Paralleling our multivariate twin results, we observed that the 
effects of the prediction from NonCog PGS to academic achievement 
increased from childhood to adolescence, beyond the effects of the Cog 
PGS. A few explanations are possible for this finding. First, this could 
be attributable to rGE, which could be passive, evocative or active29,46. 
Another explanation could be that PGSs become increasingly predic-
tive during development as our sample gets closer in age to the adult 
samples where GWAS effect sizes were estimated in the case of EA and 
CP17. However, it is worth noting that this increase in prediction was not 
observed for the Cog PGS, for which effects on academic achievement 
were mostly developmentally stable. Moreover, our triangulation of 
results across multiple methods (including phenotypic and twin analy-
ses) adds support to our finding of these developmental differences 
between Cog and NonCog genetics.

We applied a within-sibling design43 to test whether environmental 
variables that are shared by siblings and that potentially confound PGS 
associations could explain the observed increase in the predictive 
power of the NonCog PGS. While the contributions of both PGSs were 
attenuated within family, suggesting a substantial role for environmen-
tal confounds shared by family members, an increase in the contribu-
tion of NonCog PGS to academic achievement from age 7 to 16 years 
was still evident when comparing siblings. In contrast, the within-family 
contribution of the Cog PGS remained relatively stable. The increase 
in the NonCog PGS prediction at the within-family level is consistent 
with transactional processes driven by active or evocative rGE30,46,47 for 
NonCog PGS. As children grow up, they actively evoke or shape their 
environmental experiences based in part on their genetic dispositions, 
and these experiences in turn contribute to their academic develop-
ment. Our findings suggest that children’s educational experiences are 
increasingly shaped by their propensity towards non-cognitive skills.

To delve deeper into the role of socio-economic factors, we tested 
whether SES could modify the relationship between Cog and NonCog 
PGSs and academic achievement over development. While we did not 
find evidence for interaction effects in this regard, the Cog and NonCog 
PGS were conditionally independent in a multivariable model includ-
ing SES, further indicating that the genetics captured by the NonCog 
factor were at least partly independent of SES-related genetic and 
environmental effects.

One caveat of these gene–environment interaction analyses is 
that adjusting for a heritable covariate, such as SES, can yield biased 
estimates in multivariable models including PGS48,49. Future work 
is needed to determine whether this is the case, perhaps leveraging 
results of within-family GWAS to construct PGS for ‘direct’ effects 
within families50. This limitation also pertains to our within-sibling 
PGS analyses, as it might be difficult to separate direct and indirect 
effects using population-based GWAS effects as a starting point51. 
Follow-up of these analyses employing PGS for direct effects obtained 
from family-based GWAS will shed light on this potential limitation. 
It should also be acknowledged that indirect genetic effects on edu-
cation might reflect social stratification across generations in addi-
tion to nurturing processes that operate within nuclear families52. 
A further caveat of the present work is that, while we investigated 
genetic effects on non-cognitive skills and their link with academic 
achievement across development, we did not investigate stability and 
change using longitudinal models. Future work explicitly investigating 
developmental change at the phenotypic53, genetic28 and genomic40,54 
level, for example, using latent growth models55, will address further 
developmental questions related to the role of non-cognitive skills in 
academic development.

To conclude, our study provides an in-depth investigation of the 
role of non-cognitive genetics in academic development. Triangu-
lating multiple genetic and genomic methods, we found consistent 
evidence for the increasingly important role that non-cognitive skills 
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play during compulsory education. Genetic dispositions towards 
non-cognitive skills become increasingly predictive of academic 
achievement and, by late adolescence, they explain as much variance 
in achievement as do genetic dispositions towards cognitive skills. 
Results from within-family and developmental analyses are consist-
ent with theorized transactional processes of active/evocative rGE by 
which, as they grow up, children evoke and actively select academic 
environments that correlate with their genetic disposition towards 
non-cognitive skills29,46. Fostering non-cognitive skills might provide 
a successful avenue for educational interventions.

Methods
Sample
Participants are part of the Twins Early Development Study (TEDS), a 
longitudinal study of twins born in England and Wales between 1994 and 
1996. The families in TEDS are representative of the British population 
for their cohort in terms of socio-economic distribution, ethnicity and 
parental occupation. In total, 10,000 families are still actively involved 
with the TEDS study over 20 years after the first data collection wave 
(see ref. 56 for additional information on the TEDS sample). The present 
study includes data collected in TEDS across multiple waves. Specifi-
cally, we analysed data collected over five waves, when the twins were 4, 
7, 9, 12 and 16 years old. The sample size and composition differ between 
collection waves, numbers for all measures included in the study are 
reported in Supplementary Table 1a. Individuals with severe medical 
conditions were excluded from analyses. These conditions include det-
rimental prenatal and postnatal conditions, as well as other conditions 
that could seriously impact later development. In addition, twins with 
uncertain and unknown zygosity were excluded from the analyses. TEDS 
has ethical approval from the research ethics committee of Kings Col-
lege London (references: PNM/09/10–104 and HR/DP‐20/21–22060). 
Consent was obtained before data collection at every wave.

Measures
Below we provide a brief description of all the measures included in the 
present study. Please refer to https://www.teds.ac.uk/datadictionary 
for detailed descriptions of each measure and information on the items 
included in each construct.

Education-specific non-cognitive skills. At 9 years of age, data 
on education-specific non-cognitive skills were collected from par-
ents, teachers and self-reports from the twins. Measures of academic 
self-perceived ability57, academic interest57 and the Classroom Environ-
ment Questionnaire (CEQ58) were available from all raters. The CEQ 
included the following subscales rated by parents and twins: (1) CEQ 
classroom satisfaction scale, (2) CEQ educational opportunities scale and 
(3) CEQ adventures scales that assessed enjoyment of learning. Ratings on 
the CEQ classroom satisfaction scale were also provided by the teachers.

At 12 years of age, data on education-specific non-cognitive skills 
were collected from parents, teachers and self-reports. The following 
measures were collected: academic self-perceived ability57, academic 
interest57, the mathematics environment questionnaire59 and the lit-
eracy environment questionnaire60. The questionnaires asked several 
questions related to literacy and mathematics, including items, such 
as ‘reading is one of my favourite activities’, ‘when I read books, I learn 
a lot’ and ‘in school, how often do you do maths problems from text 
books?’, all rated on a four-point Likert scale.

At 16 years of age, education-specific non-cognitive skills 
were assessed via self-reports provided by the twins. The battery of 
education-specific non-cognitive constructs included the following 
measures:

 (a) The brief academic self-concept scale included ten items 
(adapted from ref. 61), such as ‘I like having difficult work to do’ 
and ‘I am clever’, rated on a five-point Likert scale.

 (b) School engagement62 includes five subscales: teacher–student 
relations, control and relevance of schoolwork, peer support 
for learning, future aspirations and goals and family support for 
learning. The school engagement scale includes items, such as  
‘I enjoy talking to the teachers at my school’, ‘I feel like I have a 
say about what happens to me at school’, ‘school is important 
for achieving my future goals’ and ‘when I have problems at 
school, my family/carer(s) are willing to help me’, rated on a 
four-point Likert scale.

 (c) Grit was assessed with eight items from the Short Grit Scale63 
asking the twins to report on their academic perseverance 
answering questions such as ‘setbacks don’t discourage me’ and 
‘I am a hard worker’, rated on a five-point Likert scale.

 (d) Academic ambition64 was measured with five items asking 
participants to rate statements, such as the following ‘I am 
ambitious’ and ‘achieving something of lasting importance is 
the highest goal in life’ on a five-point Likert scale.

 (e) Time spent studying mathematics was assessed with three 
items asking participants how much time every week they spent 
in ‘regular lessons in mathematics at school’, ‘out-of school-time 
lessons in mathematics’ and ‘study or homework in mathemat-
ics by themselves’.

 (f) Mathematics self-efficacy65 was measured with eight items ask-
ing students how confident they felt about having to perform 
different mathematics tasks, for example: ‘calculating how 
many square metres of tiles you need to cover a floor’ and 
‘understanding graphs presented in newspapers’, rated on a 
four-point Likert scale

 (g) Mathematics interest65 asked participants to respond to three 
questions related to interest in mathematics, including ‘I do 
mathematics because I enjoy it’ and ‘I am interested in the 
things I learn in mathematics’.

 (h) Curiosity was assessed with seven items66 asking participants to 
rate statements, such as ‘when I am actively interested in some-
thing, it takes a great deal to interrupt me’ and ‘everywhere I go, 
I am looking out for new things or experiences’ on a seven-point 
Likert scale

 (i) Attitudes towards school was measured using the Programme 
for International Student Assessment attitudes to school meas-
ure65, which included four items, such as ‘school has helped 
give me confidence to make decisions’ and ‘school has taught 
me things, which could be useful in a job’ rated on a four-point 
Likert scale.

Self-regulation. Emotional and behavioural self-regulation was 
assessed at all ages using the Strengths and Difficulties Questionnaire 
(SDQ)67. Data on domain-general self-regulation skills were collected 
from parents, teachers and self-reported by the twins. The SDQ includes 
five subscales: hyperactivity, conduct problems, peer problems, emo-
tional problems and pro-social behaviour. Composite scores for all 
subscales except pro-social behaviour were reversed so that higher 
scores indicated higher levels of domain-general self-regulation skills. 
At 7 years of age, domain-general self-regulation skills were rated 
by the parents; at 9 years and 12 years by the parents, teachers and 
self-reported by the twins; and at 16 years self-reported by the twins.

Cognitive ability. At 7 years of age, cognitive ability was measured 
using four tests that were administered over the telephone by trained 
research assistants. Two tests assessed verbal ability: a 13-item similar-
ity test and 18-item vocabulary test, both derived from the Wechsler 
Intelligence Scale for Children (WISC-III)68. Non-verbal ability was 
measured using two tests: a nine-item conceptual groupings test69 and 
a 21-item WISC picture completion test68. Verbal and non-verbal ability 
composites were created by taking the mean of the standardized test 
scores within each domain. A general cognitive ability (g) composite 
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was derived taking the mean of the two standardized verbal and two 
standardized non-verbal test scores.

At 9 years of age, cognitive ability was assessed using four tests 
that were administered as booklets sent to TEDS families by post. 
Verbal ability was measured using the first 20 items from WISC-III-PI 
words test70 and the first 18 items from WISC-III-PI general knowledge 
test70. Non-verbal ability was assessed using the shapes test (CAT3 
Figure Classification)71 and the puzzle test (CAT3 Figure Analogies)71. 
Verbal and non-verbal ability composites were created by taking the 
mean of the standardized test scores within each domain. A g composite 
was derived taking the mean of the two standardized verbal and two 
standardized non-verbal test scores.

At 12 years of age, cognitive ability was measured using four tests 
that were administered online. Verbal ability was measured using the 
full versions of the verbal ability tests administered at 9 years: the full 
30 items from WISC-III-PI words test70 and 30 items from WISC-III-PI 
general knowledge test70. Non-verbal ability was measured with the 
24-item pattern test (derived from the Raven’s Standard Progressive 
Matrices)72 and the 30-item picture completion test (WISC-III-UK)68. 
Verbal and non-verbal ability composites were created by taking the 
mean of the standardized test scores within each domain. A g composite 
was derived from the mean of the two standardized verbal and two 
standardized non-verbal test scores.

At 16 years of age, cognitive ability was assessed using a composite 
of one verbal and one non-verbal test administered online. Verbal abil-
ity was assessed using an adaptation of the Mill Hill Vocabulary test73 
and non-verbal ability was measured using an adapted version of the 
Raven’s Standard Progressive Matrices test72. A g composite was derived 
taking the mean of the two standardized tests.

Academic achievement. At 7 years of age, academic achievement 
was measured with standardized teacher reports and consisted of 
standardized mean scores of students’ achievements in English and 
mathematics, in line with the National Curriculum level. Performance in 
English was assessed in four domains: speaking, listening, reading and 
writing abilities. Performance in maths was assessed in three domains: 
applying mathematics, as well as knowledge about numbers, shapes, 
space and measures.

At 9 years of age, academic achievement was again assessed using 
teacher reports. The domains assessed were the same for English and 
mathematics (although on age-appropriate content). In addition, 
performance in science was assessed considering two key domains: 
scientific enquiry and knowledge and understanding of life processes, 
living things and physical processes.

At 12 years of age, academic achievement was assessed in the 
same way as at age 9, with two exceptions. Mathematics added a fourth 
domain, data handling, and science added a third domain, materials 
and their properties. These additions were in line with the changes 
made to the National Curriculum teacher ratings.

At 16 years of age, academic achievement was measured using 
the General Certificate of Secondary Education (GCSE) examination 
scores. The GCSE is the UK nationwide examination usually taken by 
16 year olds at the end of compulsory secondary education74. Twins’ 
GCSE scores were obtained via mailing examination results forms to 
the families shortly after completion of the GCSE exams by the twins. 
For the GCSE, students could choose from a wide range of subjects. 
In the current analyses the mean score of the three compulsory GCSE 
subjects: English language and/or English literature, mathematics and a 
science composite (a mean score of any of the scientific subjects taken, 
including physics, chemistry and biology).

Family SES. At first contact, parents of TEDS twins received a ques-
tionnaire by post, and were asked to provide information about their 
educational qualifications, employment and mothers’ age at first birth. 
A SES composite was created by standardizing these three variables 

and calculating their mean. The same measures, except for mother’s 
age at first birth, were used to measure family SES at 7 years of age.  
At age 16 years, data on SES were collected using a web questionnaire, 
and a total score was calculated from the standardized mean of five 
items: household IN, mother’s and father’s highest qualifications and 
mother’s and father’s employment status.

Genetic data. Two different genotyping platforms were used because 
genotyping was undertaken in two separate waves, 5 years apart. Affym-
etrixGeneChip 6.0 SNP arrays were used to genotype 3,665 individuals. 
Additionally, 8,122 individuals (including 3,607 dizygotic (DZ) co-twin 
samples) were genotyped on Illumina HumanOmniExpressExome-8v1.2 
arrays. Genotypes from a total of 10,346 samples (including 3,320 DZ 
twin pairs and 7,026 unrelated individuals) passed quality control, 
including 3,057 individuals genotyped on Affymetrix and 7,289 indi-
viduals genotyped on Illumina. The final data contained 7,363,646 
genotyped or well-imputed SNPs. For additional information on the 
treatment of these samples see ref. 75.

Analytic strategies
Our analyses fully adhered to our pre-registration, available at the 
following link: https://osf.io/m5f7j. Although we did not deviate from 
our pre-registered analyses, we extended them to include two further 
analyses. First, we explored within-family PGS associations to examine 
whether and to what extent the PGS prediction of academic achieve-
ment could be accounted for by family-wide processes. Second, we 
explored PGS × SES interactions in predicting academic achievement 
across compulsory education.

Factor analysis, correlations and regressions. Confirmatory factor 
analysis was employed to create latent dimensions of non-cognitive 
skills and general Cog ability at all ages using the lavaan package for R76. 
On the basis of well-established literature on general cognitive ability 
(g) and previous work in the TEDS sample77, we constructed one factor 
for g at each developmental stage. Each g factor was created by taking 
the weighted loadings of two verbal and two non-verbal tests (Measures 
and Supplementary Table 6). Confirmatory factor analysis was also 
employed to construct dimensions of non-cognitive characteristics. 
On the basis of previous meta-analytic work on the non-cognitive 
characteristics that matter for educational outcomes9,78, we embraced 
a theoretical distinction between education-specific non-cognitive 
skills (for example, motivations, attitudes and goals) and broader, 
more de-contextualized measures of self-regulation (for example, 
behavioural and emotional regulation), and created separate factors 
for (1) education-specific non-cognitive skills and (2) domain-general 
self-regulation skills separately for ages and raters, including all the 
measures available at each age for each rater (see Supplementary 
Tables 2 and 3 for factor loadings and model fit indices).

We applied phenotypic correlations to examine the associations 
between non-cognitive skills (both observed measures and factors) 
and general cognitive ability and academic achievement at each age. 
We applied multiple regressions to explore the associations between 
non-cognitive skills and academic achievement accounting for general 
cognitive ability. We applied Benjamini–Hochberg correction79 to 
account for multiple testing.

The twin method. The twin method allows for the decomposition 
of individual differences in a trait into genetic and environmental 
sources of variance by capitalizing on the genetic relatedness between 
monozygotic (MZ) twins, who share 100% of their genetic makeup, and 
DZ twins, who share on average 50% of the genes that differ between 
individuals. The method is further grounded in the assumption that 
both types of twins who are raised in the same family share their rearing 
environments to approximately the same extent80. By comparing how 
similar MZ and DZ twins are for a given trait (intraclass correlations), 
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it is possible to estimate the relative contribution of genetic factors 
and environments to variation in that trait. Heritability, the amount 
of variance in a trait that can be attributed to genetic variance (A), can 
be roughly estimated as double the difference between the MZ and 
DZ twin intraclass correlations80. The ACE model further partitions 
the variance into shared environment (C), which describes the extent 
to which twins raised in the same family resemble each other beyond 
their shared genetic variance, and non-shared environment (E), which 
describes environmental variance that does not contribute to similari-
ties between twin pairs (and also includes measurement error).

The twin method can be extended to the exploration of the covari-
ance between two or more traits (multivariate genetic analysis). Multi-
variate genetic analysis allows for the decomposition of the covariance 
between multiple traits into genetic and environmental sources of vari-
ance, by modelling the cross-twin cross-trait covariances. Cross-twin 
cross-trait covariances describe the association between two variables, 
with twin one’s score on variable one correlated with twin two’s score 
on variable two, which are calculated separately for MZ and DZ twins. 
The examination of shared variance between traits can be further 
extended to test the aetiology of the variance that is common between 
traits and of the residual variance that is specific to individual traits. 
We conducted these analyses in OpenMx for R81.

It is possible to apply SEM to decompose latent factors into A, C 
and E components, applying models, such as the common pathway 
model. The common pathway model is a multivariate genetic model 
in which the variance common to all measures included in the analysis 
can be reduced to a common latent factor, for which the A, C and E 
components are estimated. As well as estimating the aetiology of the 
common latent factor, the model allows for the estimation of the A, 
C and E components of the residual variance in each measure that is 
not captured by the latent construct82. We conducted these analyses 
in Mplus83.

A further multivariate twin method, grounded in SEM, is the 
Cholesky decomposition, which examines the genetic and environ-
mental underpinnings of the associations between multiple varia-
bles or latent factors. The Cholesky approach parses the genetic and 
environmental variation in each trait into that accounted for by traits 
previously entered into the model and the variance, which is unique 
to a newly entered trait. In our case, the Cholesky decomposition parti-
tions the genetic and environmental variance that is common across 
cognitive, non-cognitive and achievement measures from the genetic 
and environmental variance that is common between non-cognitive 
skills and achievement, independently of that accounted for by gen-
eral cognitive ability. Cholesky decompositions were conducted on 
latent dimensions of cognitive and non-cognitive skills and observed 
variation in academic achievement (Supplementary Tables 12 and 13).  
We conducted these analyses in Mplus83.

Genomic SEM. Genomic SEM40 is an approach to conduct multivariate 
genome-wide association analyses. On the basis of the principles of SEM 
widely used in twin analyses and integrated with linkage disequilibrium 
score regression84, genomic SEM jointly analyses GWAS summary 
statistics for multiple traits to test hypotheses about the structure of 
the genetic covariance between traits. Here, we employed genomic 
SEM to create latent GWAS summary statistics for unmeasured traits 
on the basis of other traits for which GWAS summary statistics exist. 
Recent work applied a GWAS-by-subtraction approach20 leveraging the 
GWASs of EA17 and CP17,85 to obtain a GWAS of non-cognitive skills. The 
GWAS-by-subtraction approach estimates, for each SNP, an effect on 
EA that is independent of that SNP’s effect on CP (therefore, indexing 
residual ‘non-cognitive’ SNP effects). The model regresses the EA and 
CP summary statistics on two latent variables, Cog and NonCog. EA 
and CP are both regressed on the Cog latent variable and only EA is 
regressed on the NonCog latent factor. The Cog and NonCog factors 
are specified to be uncorrelated and residual covariances across factor 

indicators are set to zero. Cog and NonCog are then regressed on each 
SNP, iterating across all SNPs in the genome.

We extended the GWAS-by-subtraction with the aim of obtaining 
potentially more fine-grained Cog and NonCog factors. Specifically, 
the model was extended as follows: loading exclusively on the Cog 
factor: five UK Biobank Cog traits (CP85, symbol digit (SD) substitu-
tion, memory, trail making test and RT)41. Loading on both the Cog and 
NonCog factors: EA17, Townsend deprivation index86 and income42. An 
additional difference from the original GWAS-by-subtraction is that we 
let residual variances vary freely (that is, we did not constrain them to 
0; Fig. 3a and Supplementary Table 14).

PGS analyses. PGSs were calculated as the weighted sums of each 
individual’s genotype across all SNPs, using LDpred weights87. LDpred 
is a Bayesian shrinkage method that corrects for local linkage dis-
equilibrium (that is, correlations between SNPs) using information 
from a reference panel (we used the target sample (TEDS) limited 
to unrelated individuals) and a prior for the genetic architecture of 
the trait. We constructed PGS using an infinitesimal prior, that is, 
assuming that all SNPs are involved in the genetic architecture of the 
trait, as this has been found to perform well with highly polygenic 
traits, such as EA, and in line with the approach adopted by Demange 
et al.20. In regression analyses, as with Demange et al.20, both the Cog 
and NonCog PGSs were included in multiple regressions together 
with the following covariates: age, sex, the first ten principal compo-
nents of ancestry and genotyping chip and batch. We accounted for 
non-independence of observation using the generalized estimating 
equation (GEE) R package88.

Within and between-family analyses. We conducted within-sibling 
analyses using DZ twins to estimate family-fixed effects of both Cog and 
NonCog PGS on achievement across development43. A mixed model 
was fit to the data, including a random intercept to adjust for family 
clustering, and two family-fixed effects in addition to covariates (age, 
sex, the first ten principal components of ancestry and genotyping 
chip and batch): a between-family effect, indexed by the mean family 
PGS (that is, the average of the DZ twins’ PGS within a family), and a 
within-family effect, indexed by the difference between each twin’s 
PGS from the family mean PGS. Analyses were repeated with the PGS 
from Demange et al.20 as sensitivity analyses.

Gene–environment interaction analyses. We conducted gene–envi-
ronment interaction analyses to test whether SES moderated the effects 
of the Cog and NonCog PGS prediction on academic achievement over 
development. We fit a linear mixed model including Cog and NonCog 
PGS (the extensions), SES and their two-way interactions after adjusting 
for covariates (as above) and two-way interactions between predictors 
and covariates, plus a random intercept to adjust for family clustering. 
We adjusted for multiple testing using the Benjamini–Hochberg false 
discovery rate method79 for all PGS analyses, at an α level of 0.05.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Researchers can apply for access to the TEDS data through their data 
access mechanism (www.teds.ac.uk/researchers/teds-data-access- 
policy). Summary statistics for the extended Cog and NonCog  
factors can be found via figshare at https://figshare.com/s/25abf6cc-
4ca207468c6c (ref. 89).

Code availability
Code is available via GitHub at https://github.com/CoDEresearchlab/
NoncognitiveGenetics.
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